Principles of environmental risk assessment (focusing on contaminated land)

EnviTox webinar

13.9.2021

ussi Reinikainen

enior Advisor

mush Environment Institute (SYKE)

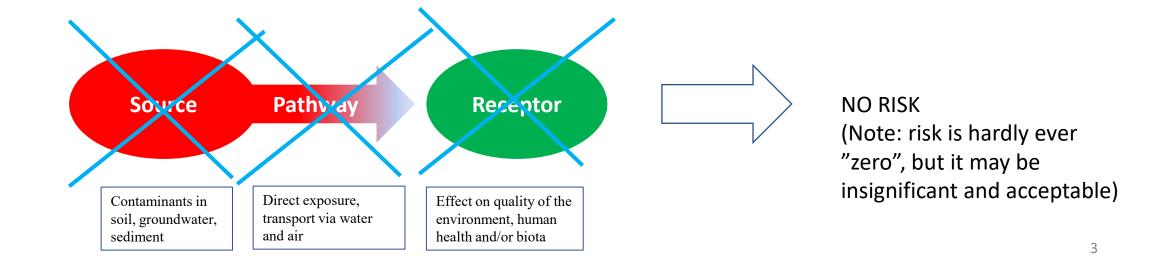
Environmental risk assessment (ra) of chemicals

General procedure:

- 1) Risk/hazard identification
- 2) Exposure-effects assessment (risk determination)
- 3) Risk characterization

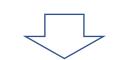
Different tiers

- Screening -> baseline -> detailed
- Different scales
 - Spatial and temporal dimensions
- Different targets and endpoints
 - Humans, biota, groundwater, surface water etc.
 - Cancer, reproduction, n:o of species, groundwater usage
- Different protection levels
 - Cancer risk 10^{-4} ... 10^{-6} ; PNEC -> HC5 -> HC50
- Different tools
 - Reference values, laboratory and site measurements, models



→ Essential: why is RA done and how are its results used?

- o Prospective vs. retrospective (prevention vs. management of risks)
- Generic vs. case-specific (conservative vs. realistic)
- Legal requirements vs. scientific interest
- Strict vs. flexible approach


RISK ASSESSMENT IN CONTAMINATED LAND MANAGEMENT (CLM)

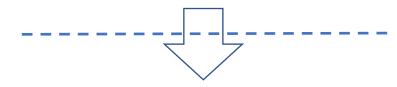
- Both scientific and regulative procedure / desision support tool
 - Are risks big enough to warrant actions /remediation and to what extent? Risk assessment -> risk management
- Based on source–pathway–receptor linkage
 - Always site-specific; incl. human and ecological receptors, and multiple chemicals in different env. compartments
 - Tiered approach often applied; screening -> baseline -> detailed; conservative -> realistic
- Targets, desired level of protection etc. depend on regulatory demands
 - Risk assessment includes political elements, not only toxicological aspects

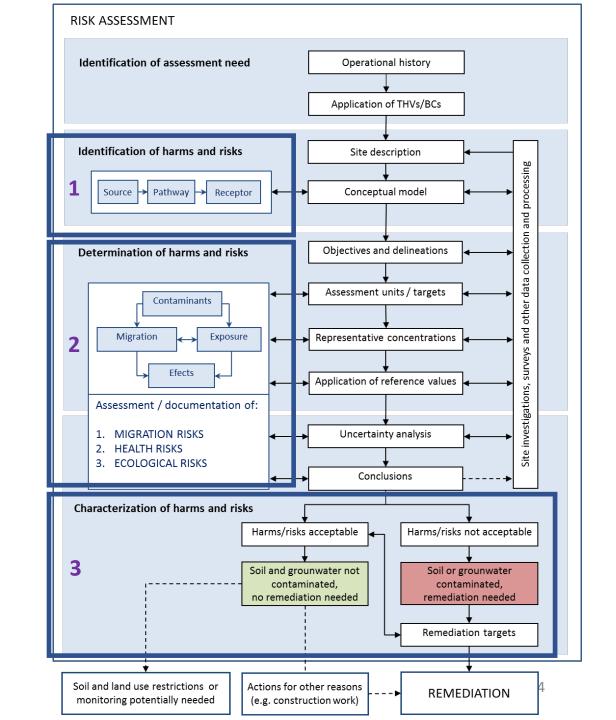
RISK ASSESSMENT PROCESS (CLM)

SITE HISTORY

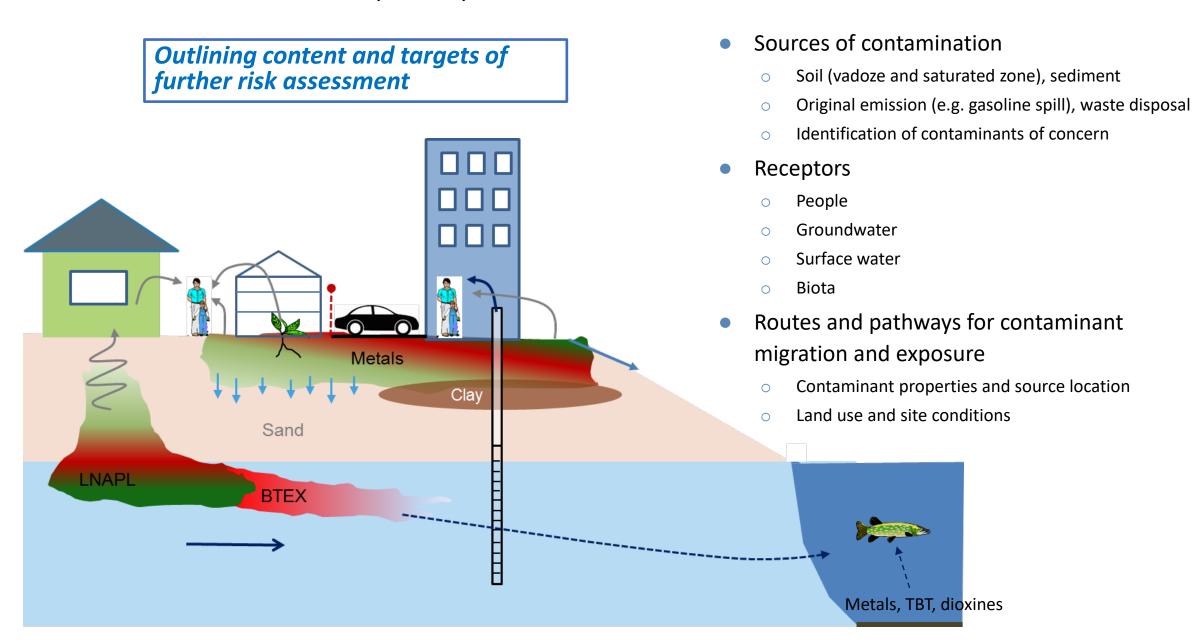
CONCEPTUAL SITE MODEL

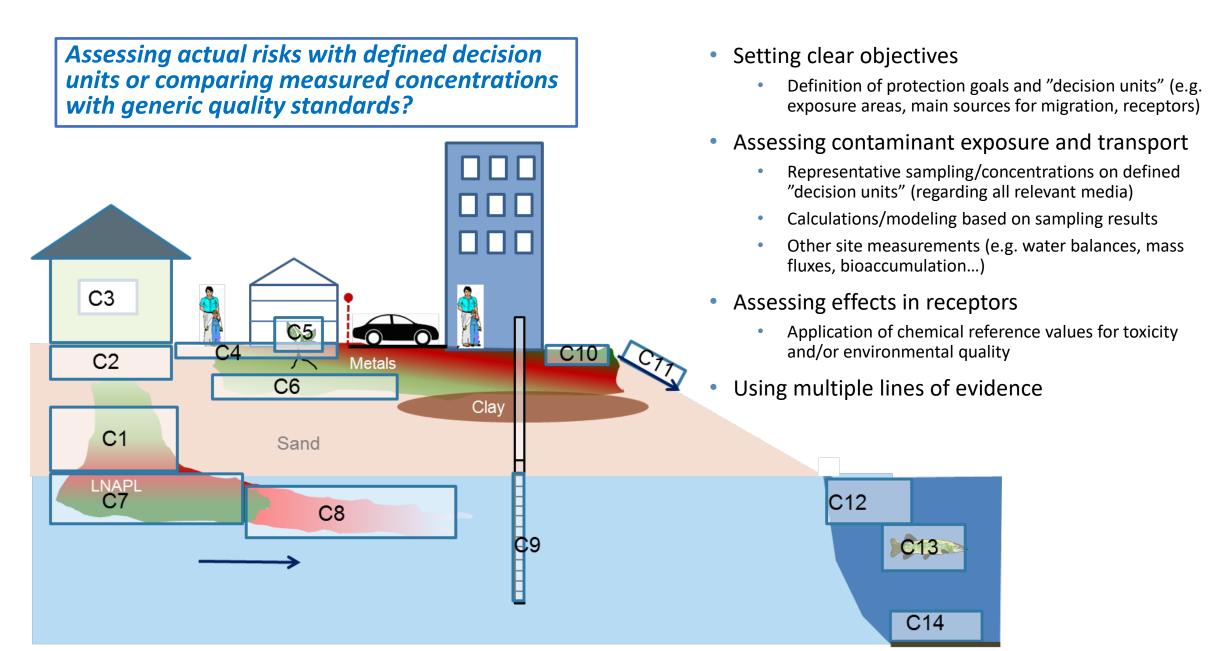
OBJECTIVES / TARGETS


SITE INVESTIGATIONS AND SURVEYS


RISK ESTIMATES

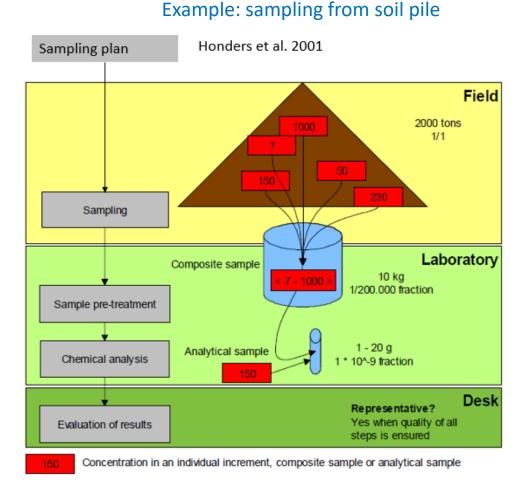
RISK MANAGEMENT DECISION


IMPLEMENTATION OF RISK MANAGEMENT ACTIONS / REMEDIATION


RISK ASSESSMENT IN REACH (EU CHEMICAL REGULATION)

RISK IDENTIFICATION (CLM) - CONCEPTUAL SITE MODEL

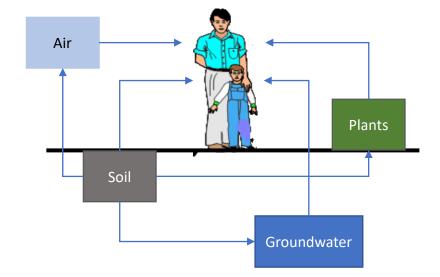
RISK DETERMINATION AND CHARACTERIZATION (CLM)



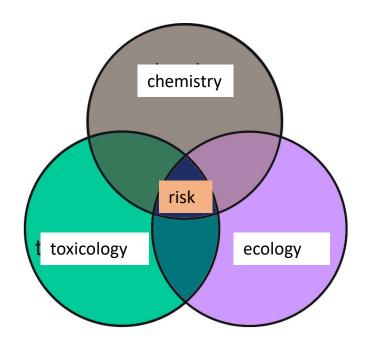
Representative sampling - foundation of site-specific risk assessment

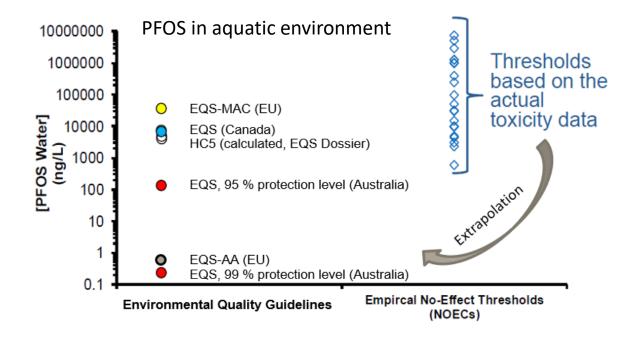
"Representative sample is a sample in which the characteristic(s) of interest is (are) present with a reliability appropriate for the purposes of the testing programme" (EN 14899)

Setting clear objectives


- O What are the exact questions to which you want answers from sampling?
- Representative for one question is often not respresentative for another (e.g. source characterization vs. exposure assessment)
- → Different sampling plan for different questions/purposes
- Defining proper "decicion/assessment units" (= sampling units)
 - O What is the population of interest defined by your questions?
 - o In RA sampling targeted at exposure and transport routes or receptors
 - → Exact delineation of area/mass/volume of soil, water, air, biota etc.
- Ensuring sufficient quality assurance
 - How reliable do your results have to be (acceptable sampling error; 99%, 75%, etc)?
 - Tackling the matrix heterogeneity in space (and in time)
 - → Selection of appropriate sampling design

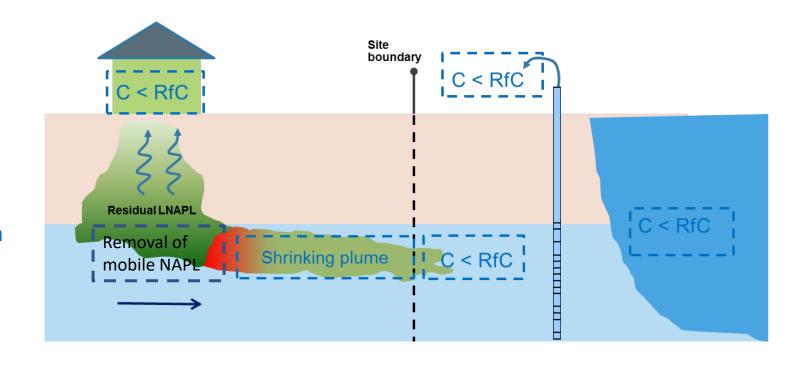
→ Chasing "hot spots" is often not practical and in RA, not even necessary


HEALTH RISK ASSESSMENT (CLM)


- Assessment of exposure mainly
 - Ingestion, inhalation and dermal
- Main exposure pathways
 - Ingestion and inhalation of soil and dust (contaminants in top soil)
 - Inhalation of indoor air (volatile compunds)
 - Ingestion of groundwater (soluble compounds)
 - Ingestion of vegetables (bioconcentrated compunds)
- Average daily intake via all exposure routes
 - Obs! Representative concentrations on exposure patways
- Exposure vs. tolerable/acceptable daily intake
 - Incremental cancer risk for carcinogens
 - Biomonitoring and epidemiolgical studies sometimes possible

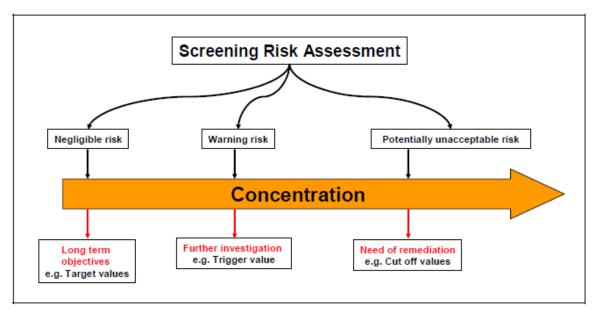
ECOLOGICAL RISK ASSESSMENT

- Potential effects on biota
 - Soil, water and sediment organisms and microbiological functions
 - Mammals, birds, fish etc.
- Literature data, ecotoxicogical/biological tests, exposure assessments...
- Often not relevant on industrial or paved areas, but potential effects off site have to be taken into account
 - Migration to surface waters, bioaccumalation and biomagnification



REGULATORY REQUIREMENTS MAY DIFFER FROM TOXICOLOGICAL RISKS

- Removal of mobile NAPL or waste materials
- Shrinking (or stable) groundwater plume
- No (significant) off-site migration
- Generic quality standards for groundwater, surface water or indoor air
- Odor and taste thresholds in drinking water

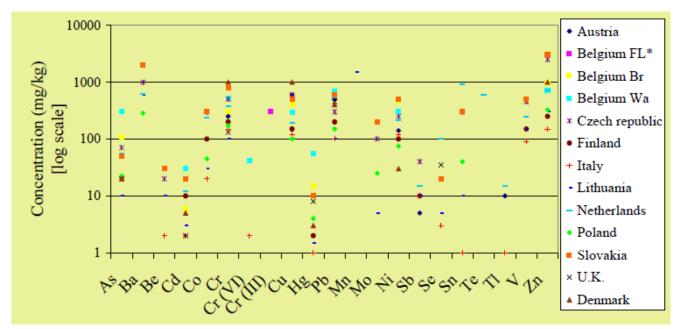

In Finland:

- Health risks
- 2. Ecological risk
- 3. Risks due to contaminant migrtation

Environmental quality standards / guideline values

- Commonly used tools to regulate environmental contamination
 - Regulatory values especially for soil, but also for other environmental compartments (e.g. groundwater and surface water)
- Risk-based concentration values with predefined conditions and land use
 - Include toxicological, political, technical and socio-economic elements
- Application depends e.g. on regulatory context
 - Long-term quality objective, warning, trigger, cut-off for remediation...
 - May not be legally binding (like the soil values in FIN)

EUR 22805 EN - 2007


Variation in National Soil Guideline Values

HERACLES REPORT ON SOIL SCREENING VALUES (EUR 22805 EN - 2007)

- Variation of extreme values ca. 1 order of mag. for metals, and between 1 and 2 (OoM) for organics
 - o Policy aspects; e.g. protection targets (health, ecol.) and levels (e.g. cancer risk 10-4...10-6; "eco risk" HC5...HC50), considered land uses
 - Scientific aspects; e.g. algorithms and input parameters
 - Geographical aspects; e.g. soil properties, depth to groundwater, foundation of buildings, climate conditions)
 - Socio-cultural aspects; e.g. production of home-grown vegetables, drinking water usage from private groundwater wells

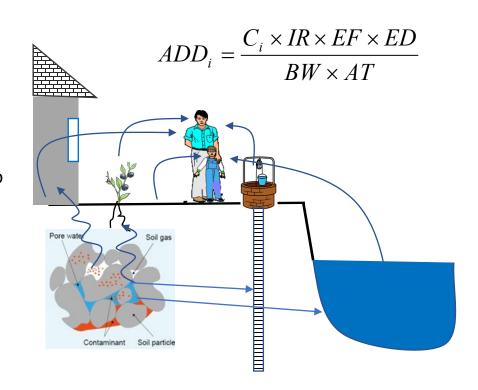
→ Same variation applies to site-specific risk assessments, too

Example: SGVs for potential unacceptible risk, metals (residential site use)

Protected receptors considered in SGVs

	∱	2	100 magain	₩
	Human health	Terrestrial Ecosystem	Groundwater drinking	Surface Water
Austria				
Walloon (BE) Flanders (BE)				
Czech Rep. Denmark				
Germany				
Finland Italy				
Lithuania				
Netherlands				
Poland				
Spain Sweden				
UK				

Example — How SGVs may compromise risk-based approach


- Local soil ecosystem is often NOT the primary protection target in FIN...
- ...yet soil ecotoxicity-based soil guideline values (SGV) are often used as remediation criteria
 - e.g. SGVeco for Zn and Cu 250 and 150 mg/kg, while SGVhealth > 10 000 mg/kg
- In addition, "dig and dump" is the most common remediation option

 \rightarrow So, is this really a risk-based approach and does it even protect the local soil ecosystem...?

RISK CALCULATIONS/MODELING

- Often needed to assess exposure and contaminant migration
 - Requires knowledge on site conditions and fate&transport of contaminants
- A lot of quantitative tools and default chemical / exposure parameters available
 - Even simple partioning / transport /mass balance / exposure equations often do the job
- Risk assessment should NEVER be based on modeling only
 - Validation with site history, conditions and measurements (e.g. representative concentrations in exposure areas; theoretical vs. observed transport)
 - Many "risks" (-> targets of RA) can be measured directly without modeling

$$HQ = \frac{ADD_{\text{oral/dermal}}}{TDI \, tai \, CR_{oral}} + \frac{C_{ia} + C_{oa}}{TCA \, tai \, CR_{inhal}}$$

SUMMARY (REGARDING CONTAMINATED LAND RA IN PARTICULAR)

- Develop sound conceptual site model (CSM)
 - Source-pathway-receptor linkage
 - Eloborate the CSM with new data during the assessment
- Set clear objectives for each step in risk assessment using the CSM
 - Detailed site investigations, exposure assessment etc.
- Assess contaminant migration and exposure by using representative sampling, other relevant site investigations and calculations
 - Use multiple lines of evidence
 - Validate calculation/modeling results with site data
- Avoid putting too much emphasis on generic concentration thresholds (if possible)
 - Generic concentration thresholds can never replace a proper site-specific risk assessment in risk-based decision making

→ Reliable risk assessment is a precondition for justified decision making and reasonable (sustainable) risk management / remediation

Thank you!

Jussi Reinikainen
Finnish Environment Institute (SYKE)
jussi.reinikainen@syke.fi

