PETER HANSEN

Key research methods and approaches in MFC applications

Xamk-RISE collaboration

Wet-end 4.0

Flocculation studies

PW25000 test 1 2021-05-27 09-29

PVM® image illustrating the view from the FBRM Probe Window

Cutaway view of FBRM In-process Probe

MFC in Papermaking applications

Boosting product performance

- Synergies between MFC and other strength additives
 - Exploit the high surface area and charge of MFC
 - Effect with different starch qualities and/or polyelectrolyte forms, e.g. CPAM
- Fiber Pre-treatment
 - Carboxymethylation
 - Grafting

Improved retention & dewatering

- Controlled MFC-fiber-water interaction by balanced chemistry
 - Micro particle or low Mw additive for improved MFC retention and web dewatering
 - High charge density dewatering aids
- Sheet structure design to minimize web sealing effect
 - Optimized retention system
 - Controlled retention for optimal ZD distribution

Process Waters

- Effect of process water quality on strength strategy
 - Effect on wet end chemistry performance
 - Simple strategies to minimize impact
- Water treatment
 - Laboratory evaluation of different water treatment strategies

Methods used by RISE for wet-end chemistry investigations

- More conventional
 - Retention of fines by DDJ (Dynamic Drainage Jar)
 - Z-potential & Cationic demand
- Less conventional
 - Dynamic drainage analyser, DDA
 - Dynamic sheet former
 - FBRM, Focused Beam Reflectance Measurements
 - High-speed imaging

- In house
 - DSSP method , distribution of fines/MFC in the thickness direction of a sheet
 - Flocculation studies in a flow loop
 - (Pilot paper machine trials)

Chemical retention

- The weight of fines passing thought a screen in proportion to original weight of fines in the pulp
- Measurements done under continuous
 stirring

Pulp Z-potential

- Z-potential is a relatively common measurement in colloidal chemistry.
- For fibre applications, systems are designed such that the charges on the fibre are measured indirectly.
- The systems measures the streaming potential through a fiber plug (retained by a mesh).
- Many studies have found clear links between the Z-potential and the behaviour of strength additives (correlation with the amount of additive that can be added to a given pulp).
- Z-potential will change with the fibre surface, the fibre size and the conductivity of the waters. RISE - CEBIPRO Webinar 2025-04-01

RI. SE

Cationic demand

- The amount of a cationic polyelectrolyte needed to neutralize the potential of the particles present in a suspension. (fibres are removed)
- Measurements of the streaming potential are combined with titration
- The suspension must be under movement to measure the streaming potential. This is achieved by a piston.
- It has been shown that the cationic demand is closely correlated with the efficiency of flocculants and coagulants in any kind of process water treatment.

Combination of Cationic demand and fiber Z-potential

RI. SE

Example

100

Retention (%)

Xamk-RISE collaboration

- Compare the effect of MFC qualities on paper strength and dewatering
 - MFC retained to similar degrees and
 - Adjust to similar levels of Z-potential to provide similar opportunities for dewatering agents

Dewatering (and web consolidation / flocculation)

→ 1 curve and 3 parameters per test

Dewatering (and web consolidation / flocculation)

Xamk-RISE collaboration: Comparison on effect of MFC qualities on paper strength and dewatering

- MFC retained to similar degrees
- Different systems for drainage aid are compared at similar "chemical loadings" on the fibres (similar level of Z-potential)

"Pre-flocculation" of MFC before dewatering aid

Pulp + MFC -> CPAM -> Starch -> Microparticles

	MFC	CPAM	Starch	Microp.	Z-pot.	Drainage time	End vacuum
MFC typ	%	kg/t	kg/t	kg/t	mV	sec.	mBar
Only Pulp	0	0	0	0	-39.4	4.2	121
Xamk	3	0	0	0	-39.8	5.1	120
Xamk	3	1	4	0.4	-5.2	4.2	118
Xamk	5	0	0	0	-42.2	8.3	163
Xamk	5	1.3	4	0.2	-6.1	5.3	132
Xamk	5	1.3	6	0.6	-2.7	4.6	125
Industrial	3	0	0	0	-40.4	5.0	141
Industrial	3	0.9	2	0.2	-5.2	4.5	120
Industrial	3	0.9	4	0.8	-2.8	4.0	114
Industrial	5	0	0	0	-40.5	7.7	155
Industrial	5	1	4	0.6	-4.6	4.9	126

"Co-flocculation" of MFC with dewatering aid

Pulp + MFC -> Starch + Hercobond

	MFC	Starch	Hercobond	Z-pot.	Drainage time	End vacuum
MFC type	%	kg/t	kg/t	mV	sec.	mBar
Only pulp	0	0	0	-39.4	4.2	121
Xamk	3	0	0	-39.8	5.1	120
Xamk	3	5	0.5	-7.4	3.4	112
Xamk	5	0	0	-42.2	8.3	163
Xamk	5	7	0.5	-5.8	4.3	124
Industrial	3	0	0	-40.4	5.0	141
Industrial	3	6	0.25	-5.6	3.4	109
Industrial	5	0	0	-40.5	7.7	155
Industrial	5	5	0.5	-4.9	4.4	120

RI. SE

Impact of hydrodynamic shear and turbulence on flocculation

Pilot scale flow loop

- Designed for relevant condition (Kolmogorov coef. etc)
 - Pipe inner diameter of 5cm in combination with flow rates (0.1 -1 m³/min)
 - Emulates approach flow and headbox conditions
- Headbox consistency, multiple dosage points (adjustable contact times)
- Characterise flocs in the suspension at two length scales using FBRM (1-1000 µm) and High-speed imaging (0.05-50 mm)

How does FBRM work?

What is FBRM® Technology?

PVM® image illustrating the view from the FBRM® Probe Window

Probe detects pulses of Backscattered light

And records measured Chord Lengths

This core patented technology is called Focused Beam Reflectance Measurement [FBRM[®]]

Method: Dosage optimization

- The polymer is added on the GCC or GCC+MFC suspension.
- The evolution of the particle size (as Median of the chord length distribution) can be followed.
- An optimum dosage can easily be identified

Method: Floc resistance - Example

Shear flow study: Xamk-RISE

"Pre-flocculation" of MFC before dewatering aid

Pulp + MFC -> CPAM -> Starch -> Microparticles

Example on trial points

Optimized for dewatering Set pre-flocculation of MFC

Optimized for dewatering, Low degree of pre-flocculated MFC

Halved level of Starch Low degree of pre-flocculated MFC

No Microparticles, Desired level of Starch, Set pre-flocculation of MFC

Resultat examples from flow loop

The dewatering system (starch and microparticles accounts from tibre blaced lation (mm scale)

? Possibly: Microparticles interact with dispersed fines/MFC, further enhanced with turbulent mixing?

Dynamic sheet former

Designed to be more paper machine like (compared to conventional sheet former)

- Higher consistencies
- Sequential stock preparation at stirring
- Applies shear forces on the suspension during build-up of the sheet
- Jet-wire speed difference induces sheet anisotropies (MD/CD ratios)
- Multiple plies from different stock

Sketch from C. Pierre First workshop in Munich PTS (1995)

Example: Strength improvement with MFC

Xamk-RISE collaboration

"Pre-flocculation" of MFC before dewatering aid Pulp + MFC -> CPAM -> Starch -> Microparticles

"Co-flocculation" of MFC with dewatering aid Pulp + MFC -> Starch + Hercobond

Distribution of MFC in thickness direction

DSSP method

- Dyed Split SpectroPhotometric method
- Fines or MFC is dyed with Pergasol Blue and mix with the pulp.
- Produced sheets are split into layers of 10-15 gsm with help of heat set laminations pouches
- The splits are characterised spectrophotometrically to obtain the opacity and colour shades
- Calibration using corresponding pulp with non-dyed fines/MFC results in weight proportion of MFC in each plie of the split sheet

RI. SE

Example: MFC distribution in thickness direction, dynamic sheet

Xamk-RISE collaboration

• "Pre-flocculation" of MFC

Pulp + MFC -> CPAM -> Starch -> Microparticles

• A total of 5% industrial MFC in the pulp

In short, the approach utilised by RISE

Good utilisation of MFC requires

- Management of available charge (Z-potential, Cationic demand)
- Controlled sheet design
 - Balance retention and dewatering (DDA)
 - Flock size distribution is a key (FBRM is useful when fillers are present)
 - Aim for even distribution of MFC in thickness direction.
 (Lab. & pilot sheet production + DSSP)
- Boundaries/conditions in the papermaking process and process water quality set the scope for MFC utilisation
 - Behaviours under hydrodynamic shear need to be understood (Dynamic sheet forming, Flow loop studies)
 RISE - CEBIPRO Webinar 2025-04-01

Peter Hansen

PhD, Operation area leader Process analysis and efficiency

RISE Bioeconomy, Materials and Processes peter.hansen@ri.se

