

Prof. of Practice Juha Lipponen

2 Postdocs 3 Master's students

Research Field

Modification of cellulose barrier, hydrophobicity and optical properties, intumescent and flame retardancy of cellulose and lignin, study on properties of wood based mechanical composites Possible products and materials

Applications

Cellulose biobarriers, Cellulose replacing TiO₂, Fire Retardant materials, AaltoCell from wastepaper, Mechanical cellulose composites (e.g. with 3D-printing)

AMBIO

Developing sandwich structures with novel biobased composite using additive manufacturing

Utilizing the 3D-printing method to manufacture the sandwich panel by using thermoset-based polymer as ink and plywood as face sheets

How?

(Potential) Applications

To improve the mechanical properties of conventional plywood

E.g., Furniture industry like chair and table

Current Highlight

Aalto University School of Chemical Engineering

finite element method (FEM)

S, Mises (Avg: 75%)

Z

+1.262e+02 +1.157e+02 +1.052e+02 +9.467e+01 +8.415e+01 +7.364e+01 +5.260e+01 +3.156e+01 +3.156e+01 +2.104e+01 +1.052e+01 +0.000e+00

Step: Step-1 Frame: 0 Total Time: 0.000000

10

Step: Step-1 Increment 200311: Step Time = 4.0000E-02 Z Primary Var: S, Mises

BIOSUOJA

Research to develop bio-based fire retardant

School of Chemical Engineering Formulation of bio-based hybrid materials that will demonstrate superior fire retardancy.

- Coating or impregnation of wood with bio-based fire-retardant.
- Chemical modification of bio-materials such as cellulose, lignin and other biopolymer for fire retardance.
- The combination of chemically modified bio-based fire retardants with additional fire-retardant additives to enhance overall fire retardance.
- The incorporation of biobased fire retardants and fire-retardant additives into commercial paint formulations.

Possible Applications

To enhance the fire protection of materials E.g., wood and textile

Test Procedure

Aalto University School of Chemical Engineering

Optimization of test procedure, materials and method will develop continuously.

Lignin as a carbon source for intumescent flame retardants (IFR)

Working principle of IFRs:

 when exposed to heat, the coating forms an expanded insulative char layer

IFR consists of:

- Carbon source -> Lignin
- Acid catalyst
- Blowing agent
- Binder

Experimental methods:

- TGA
- Muffle furnace
- Vertical flame test
- Cone calorimetry

Figure: Lazar et al. Nat Rev Mater 5, 259-275 (2020).

Replacing Titanium dioxide with Cellulose

With a network of cellulosic boundaries / porosity

- TiO₂ is a environmentally and health hazardous mineral, that is widely used as a white pigment in paints, cosmetics and plastics
- Here, we aim at replacing TiO₂ with cellulose
- The proposed/upcoming research include
 - Master's Thesis to be started in September

Cellulosic "Swiss cheese" in crystalline cellulose?

Ultra bright white cellulosic material with layered cellulose $\beta(1\rightarrow 3)$ -glucan synthesis? (Source: VTT)

Polystyrene beads created void structure in cellulose => increased opacity?

Other ways in creating a LOT of nanoscale air-cellulose boundaries?

Bio Bubble Wrap and Foam

- Preparing Business to Finland Research to Business application in cooperation with XAMK and FiberX
- 18 months project

Thank you for your attention

Aalto University School of Chemical Engineering